全球数字财富领导者
CoNET
|
客户端
|
旧版
|
北美站
|
FX168 全球视野 中文财经
首页
资讯
速递
行情
日历
数据
社区
视频
直播
点评旗舰店
商品
香港论坛
外汇开户
登录 / 注册
搜 索
综合
行情
速递
日历
话题
168人气号
文章
云服务崛起:数字化时代的基石 | AI Financial恒益投资
go
lg
...
有最大云服务的供应商亚马逊也马上要进军
AI
行业
,正是因为他们提前解决了需要面临的问题,并提前布局了强大的云服务才能让这些大公司有底气的去争夺第四次工业革命领头羊的地位。 这三家大公司本身并不是做云服务的,Microsoft做系统,Amazon做电商平台,Google做搜索引擎。但正是因为他们看清了第四次工业革命的第一个风口就是云服务,先转型的公司一定会最先获得收益,所以他们不约而同的在云服务领域提前布局,最终让他们在第四次工业革命的开始就收获了巨额利润。 这些公司之所以能够成功的转型,除了长远独到的战略眼光之外,同时还具有足够的资金和资源,才能够成功地扩展业务并转型。以下让我们先来看一看这三间公司的净值,首先,截至2023年8月,Amazon净值1.43万亿,Google净值1.66万亿,而Microsoft净值2.42万亿,就这么说可能大家对这么大的数字没什么概念,那么就让我们跟同在发展云服务,本季度云服务市场占比3%的IBM做一个对比吧,虽然同在云服务市场,但IBM的占比大大小于Amazon,Google,及Microsoft,IBM的净值为0.13万亿,相差Amazon 11倍,Google近13倍和Microsoft近19倍之多,这么一比较之下,就能看出在云服务市场中的这三个巨头拥有多么多的资产和资源。正是依托这些资源,这些公司才能提前布局,成功向云服务转型,这是其他公司哪怕花个十年都不一定追赶得上的。 这就非常符合AI Financial所提出的强者恒强的概念了,Amazon,Google和Microsoft这三间公司的总收入,都是远超一般公司所敢想象的数字,接着他们便会利用这些钱,投入大量的资金及人力去发展云服务,甚至是开拓其他新的业务,多元化发展来降低风险,并在这期间持续地盈利,因此,他们只会越来越强大,变成其他公司越来越难超越的存在。投资这样的公司才是投资未来。 “强者恒强” 【公司介绍】 AI Financial 恒益投资是一家人工智能驱动的金融投资公司,主营投资贷款Investment Loan,拥有一套颠覆性的金融投资体系。公司致力于帮助所有人,通过投资理财,获得持续稳定收入,从而过上自己想要的生活。 AI Financial 恒益投资团队希望运用这套投资体系推动加拿大养老体系的改革,让更多人通过金融投资过上更好的生活,推动社会进步,避免为了赚钱而牺牲时间和健康,或因没有足够的存款而不能顺利退休。
lg
...
AI Financial恒益投资
2023-08-19
天风证券:给予中科创达买入评级
go
lg
...
风险提示:智能化产业发展不及预期;公司
AI
行业
布局进展不及预期;公司业绩不及预期;系统性风险。 证券之星数据中心根据近三年发布的研报数据计算,中金公司于钟海研究员团队对该股研究较为深入,近三年预测准确度均值高达88.21%,其预测2023年度归属净利润为盈利8.88亿,根据现价换算的预测PE为42.72。 最新盈利预测明细如下: 该股最近90天内共有23家机构给出评级,买入评级20家,增持评级3家;过去90天内机构目标均价为106.44。 以上内容由证券之星根据公开信息整理,由算法生成,与本站立场无关。证券之星力求但不保证该信息(包括但不限于文字、视频、音频、数据及图表)全部或者部分内容的的准确性、完整性、有效性、及时性等,如存在问题请联系我们。本文为数据整理,不对您构成任何投资建议,投资有风险,请谨慎决策。
lg
...
证券之星
2023-08-17
AIGC概念走高 鸿博股份、人民网涨停 首都在线涨超10%
go
lg
...
在人工智能基础设施领域将持续加大投资,
AI
+
行业
应用生态有望迎来爆发式成长阶段。 华鑫证券指出,2023年9月迎亚运会,8月“数智元动力,赋能新亚运”亚运官方元宇宙发布仪式在杭州举行,杭州亚组委联合中国移动发布“亚运元宇宙平台”,向全球推出首个大型国际综合体育赛事元宇宙,标志智能亚运数智服务正式跨入元宇宙时代;用户可通过2D直播、VR全景沉浸式观赛,通过增强现实技术与真实世界的融合增强亚运会的虚实体验新场景。体育赛事成为元宇宙较好应用场景之一,元宇宙叠加亚运会板块可关注,第一维度数字人应用(蓝色光标、浙文互联等);第二维度城市元宇宙应用(风语筑等);第三维度元宇宙中数字资产版权(视觉中国、阜博集团等);第四维度,体育产业链中超高清视频产业链的中的芒果超媒、抖音、快手、B站等;AI应用板块伴随行业模型新品持续迭代或外部峰会举办,带来的板块β热度有望持续(AI应用中传媒占优)。 来源:金色财经
lg
...
金色财经
2023-08-14
详解Web3原生数据管道的意义、挑战以及对行业的影响
go
lg
...
并不是一种非常突破性的架构。另一方面,
AI
行业
将以下列为 GPT 模型的主要成功因素:1)定义可以针对大客户群体的业务领域,以及 2)通过数据管道进行模型调优——从数据采集到最终结果和基于结果的反馈。简而言之,通过完善服务提供目的和升级数据/信息处理过程,这些应用程序能够实现创新。 2.数据驱动的决策无处不在 我们所说的大多数创新实际上都是基于对积累的数据的处理,而不是基于机遇或直觉。正如俗话所说,“在资本主义市场上,不是强者生存,而是幸存者强”。如今的企业竞争激烈,市场饱和。因此,企业正在收集和分析各种数据,以抓住即使是最小的利基。 我们可能过于沉迷于 Schumpeter(深潮注:熊彼特,著名经济学家) 的“创造性破坏”理论,而过于重视凭直觉做出决策。然而,即使是出色的直觉最终也是个人累积数据和信息的产物。数字世界将在未来更深入地渗透到我们的生活中,越来越多的敏感信息将以数字数据的形式呈现。 Web3 市场因其赋予用户对其数据的控制权的潜力而受到广泛关注。然而,作为 Web3 的基础技术的区块链领域,目前更关注解决三难问题(深潮注:三角困境,即安全、去中心化和可扩展问题)。为了使新技术在现实世界中具有说服力,重要的是开发可以以多种方式使用的应用程序和智能。我们已经看到这种情况发生在大数据领域,自 2010 年左右以来,构建大数据处理和数据管道的方法论已经取得了重大进展。在 Web3 的背景下,必须努力推动行业发展,建立数据流系统,以便产生基于数据的智能。 3.基于链上数据流的机遇 那么,我们可以从 Web3 原生数据流系统中捕捉到哪些机遇,需要解决哪些挑战才能抓住这些机遇呢? 3.1 优点 简而言之,配置 Web3 原生数据流的价值在于可以安全有效地将可靠数据分发给多个实体,从而可以提取有价值的见解。 数据冗余性——链上数据不太可能丢失,更具弹性,因为协议网络将数据片段存储在多个节点上。 数据安全性——链上数据具有防篡改性,因为它经过由分散节点组成的网络的验证和共识。 数据主权——数据主权是用户拥有和控制自己数据的权利。通过链上数据流,用户可以看到他们的数据如何被使用,并选择仅与那些有合法需要访问的人分享。 无需许可和透明——链上数据是透明且防篡改的。这确保了正在处理的数据也是可靠的信息来源。 稳定运行——当数据流在分布式环境中由协议进行编排时,由于没有单点故障,每个层面暴露于停机时间的概率显著降低。 3.2 应用案例 信任是不同实体相互交互和做出决策的基础。因此,当可靠数据可以安全分发时,意味着许多交互和决策可以通过各种实体参与的 Web3 服务进行。这有助于最大化社会资本,我们可以想象以下几种应用案例。 3.2.1 服务/协议应用 基于规则的自动化决策系统——协议使用关键参数来运行服务。这些参数定期调整以稳定服务状态并为用户提供最佳体验。然而,协议无法始终监控服务状态并及时对参数进行动态更改。这就是链上数据流的作用。链上数据流可以用于实时分析服务状态并建议与服务要求相匹配的最佳参数集(例如,为借贷协议应用自动浮动利率机制)。 信贷市场增长——传统上,信用被用于金融市场中衡量个人的偿还能力。这有助于提高市场效率。然而,在 Web3 市场中,信用的定义仍不清晰。这是因为个人数据稀缺,行业之间缺乏数据治理。因此,整合和收集信息变得困难。通过构建一个收集和处理链上碎片化数据的过程,可以重新定义 Web3 市场中的信用市场(例如,Spectral 的 MACRO(多资产信用风险预言机)评分)。 去中心化社交/NFT 扩展——去中心化社会优先考虑用户控制、隐私保护、抗审查和社区治理。这提供了一种替代的社会范式。因此,可以建立一个管道来更顺畅地控制和更新各种元数据,并促进平台之间的迁移。 欺诈检测——使用智能合约的 Web3 服务容易受到恶意攻击,这些攻击可能窃取资金、入侵系统,并导致脱钩和流动性攻击。通过创建一个能够提前检测这些攻击的系统,Web3 服务可以制定快速应对计划,并保护用户免受伤害。 3.2.2 合作与治理倡议 完全链上的 DAO——去中心化自治组织(DAO)在有效执行治理和公共资金方面严重依赖链下工具。通过构建一个链上数据处理流程,为 DAO 运营创建一个透明的流程,可以进一步增强 Web3 原生 DAO 的价值。 缓解治理疲劳——Web3 协议决策通常通过社区治理进行。然而,有许多因素可能使参与者难以参与治理,例如地理障碍、监控压力、治理所需的专业知识缺乏、随机发布的治理议程以及不便的用户体验。如果可以创建一个工具,简化参与者从理解到实际实施个体治理议程事项的处理过程,协议治理框架可以更高效、更有效地运作。 协作作品的开放数据平台——在现有的学术和工业界中,许多数据和研究材料没有公开披露,这可能使市场的整体发展非常低效。另一方面,链上数据池可以促进比现有市场更多的协作倡议,因为它们对任何人都是透明和可访问的。许多代币标准和 DeFi 解决方案的发展就是很好的例子。此外,我们可以为各种目的运营公共数据池。 3.2.3 网络诊断 指数研究——Web3 用户创建各种指标来分析和比较协议的状态。可以研究和实时显示多个客观指标(例如,Nakaflow 的中本聪系数)。 协议指标——通过处理诸如活跃地址数量、交易数量、资产流入/流出以及网络产生的费用等数据,可以分析协议的性能。这些信息可以用于评估特定协议更新的影响、MEV 的状态以及网络的健康状况。 3.3 挑战 链上数据具有可以增加行业价值的独特优势。然而,要充分实现这些优势,必须解决行业内外的许多挑战。 缺乏数据治理——数据治理是建立一致和共享的数据政策和标准,以促进每个数据基元的集成的过程。目前,每个链上协议都建立自己的标准并检索自己的数据类型。然而,问题在于聚合这些协议数据并为用户提供 API 服务的实体之间缺乏数据治理。这使得服务之间难以集成,结果用户难以获得可靠和全面的见解。 成本效率低下——将冷数据存储在协议中可以为用户节省数据安全和服务器成本。然而,如果需要频繁访问数据进行分析或需要大量计算资源,将其存储在区块链上可能不划算。 预言机问题——智能合约只有在能够访问来自现实世界的数据时才能充分发挥作用。然而,这些数据并不总是可靠或一致的。与通过共识算法维护完整性的区块链不同,外部数据并不是确定性的。预言机解决方案必须不断发展,以确保外部数据的完整性、质量和可扩展性,而不依赖于特定的应用层。 协议尚处初级阶段——协议使用自己的代币激励用户保持服务运行并支付服务费用。然而,操作协议所需的参数(例如,服务用户的精确定义和激励方案)通常管理得很幼稚。这意味着协议的经济可持续性难以验证。如果许多协议有机地连接并创建数据管道,那么管道是否能够良好运作的不确定性将更大。 数据检索时间慢——协议通常通过许多节点的共识来处理交易,与传统的 IT 业务逻辑相比,这会限制信息处理的速度和数量。这种瓶颈很难解决,除非组成管道的所有协议的性能显著提高。 Web3 数据的真正价值——区块链是孤立的系统,尚未与现实世界相连接。在收集 Web3 数据时,我们需要考虑收集的数据是否能够提供有意义的见解,足以支付建立数据管道的成本。 陌生的语法 —— 现有的 IT 数据基础设施和区块链基础设施运作方式非常不同。甚至所使用的编程语言也不同,区块链基础设施通常使用低级语言或专为区块链需求设计的新语言。这使得新开发者和服务用户学习如何处理每个数据原语变得困难,因为他们需要学习一种新的编程语言或一种新的处理区块链数据的思维方式。 4.管道化的 Web3 数据乐高 当前的 Web3 数据原语之间没有连接,它们独立地提取和处理数据。这使得实验信息处理的协同效应变得困难。为了解决这个问题,本文介绍了在 IT 市场常用的数据管道,并将现有的 Web3 数据原语映射到该管道上。这将使使用案例更加具体化。 4.1 通用数据管道 数据管道的构建就像是在日常生活中概念化和自动化重复决策过程的过程。通过这样做,人们可以随时获取所需的特定质量的信息,并将其用于决策。要处理的非结构化数据越多,使用信息的频率越高,或者需要实时分析的程度越高,通过自动化这一系列过程可以节省获取未来决策所需主动性的时间和成本。 上图显示了在现有 IT 基础设施市场中用于构建数据管道的通用架构。适用于分析目的的数据从正确的数据源收集,并根据数据的性质和分析要求存储在适当的存储解决方案中。例如,数据湖提供了用于可扩展和灵活分析的原始数据存储解决方案,而数据仓库专注于存储结构化数据,以进行针对特定业务逻辑优化的查询和分析。然后,数据以各种方式被处理为洞察力或实用信息。 每个解决方案层次也可以以打包服务的形式提供。将从数据提取到加载的一系列过程连接起来的 ETL(抽取、转换、加载)SaaS 产品组也越来越受到关注(例如 FiveTran、Panoply、Hivo、Rivery)。顺序并不总是单向的,根据组织的具体需求,各层次可以以多种方式相互连接。构建数据管道时最重要的是要最大限度地减少数据在发送和接收到每个服务器层次时可能发生的数据丢失风险。这可以通过优化服务器的解耦程度和使用可靠的数据存储和处理解决方案来实现。 4.2 具有链上环境的管道 前面介绍的数据管道的概念图可以应用于链上环境,如上图所示,但需要注意的是,完全去中心化的管道是无法形成的,因为每个基本组件在某种程度上都依赖于中心化的链下解决方案。此外,上图目前并未包括所有的 Web3 解决方案,分类的边界可能存在模糊之处——例如,KYVE 除了作为流媒体平台外,还包括数据湖的功能,可以看作是一个数据管道本身。此外,Space and Time 被归类为去中心化数据库,但它提供了诸如 RestAPI 和流媒体等 API 网关服务,以及 ETL 服务。 4.2.1 捕获/处理 为了使普通用户或 dApp 能够高效地使用/操作服务,他们需要能够轻松识别和访问主要在协议内部生成的数据源,例如交易、状态和日志事件。这一层是一个中间件在其中发挥作用,帮助包括预言机、消息传递、身份验证和 API 管理在内的过程。主要的解决方案如下。 流媒体/索引平台 Bitquery、Ceramic、KYVE、Lens、Streamr Network、The Graph、各个协议的区块浏览器等。 节点即服务和其他 RPC/API 服务 Alchemy、All that Node、Infura、Pocket Network、Quicknode 等。 预言机 API3、Band Protocol、Chainlink、Nest Protocol、Pyth、Supra 预言机 s 等。 4.2.2 存储 与 Web2 存储解决方案相比,Web3 存储解决方案具有持久性和去中心化等几个优势。然而,它们也存在一些缺点,例如高成本、数据更新和查询的困难。因此,出现了各种解决方案,可以解决这些缺点,并实现对 Web3 上结构化和动态数据的高效处理——每个解决方案的特点各不相同,例如处理的数据类型、是否结构化以及是否具有嵌入式查询功能等。 去中心化存储网络 Arweave、Filecoin、KYVE、Sia、Storj 等。 去中心化数据库 基于 Arweave 的数据库(Glacier、HollowDB、Kwil、WeaveDB)、ComposeDB、OrbitDB、Polybase、Space and Time、Tableland 等。 *每个协议都有不同的永久存储机制。例如,Arweave 是基于区块链的模型,类似于以太坊存储,将数据永久存储在链上,而 Filecoin、Sia 和 Storj 是基于合约的模型,将数据存储在链下。 4.2.3 转换 在 Web3 的背景下,转换层与存储层一样重要。这是因为区块链的结构基本上由分布式节点集合组成,这使得使用扩展性后端逻辑变得容易。在人工智能行业,人们积极探索利用这些优势进行联邦学习领域的研究,并出现了专门用于机器学习和人工智能操作的协议。 数据训练/建模/计算 Akash、Bacalhau、Bittensor、Gensyn、Golem、Together 等。 *联邦学习是一种通过将原始模型分布在多个原生客户端上,使用存储的数据对其进行训练,然后在中央服务器上收集学习到的参数的方法,用于训练人工智能模型。 4.2.4 分析/使用 下面列出的仪表板服务和最终用户的洞察与分析解决方案是允许用户观察和从特定协议中发现各种洞察的平台。其中一些解决方案还为最终产品提供 API 服务。然而,需要注意的是,这些解决方案中的数据并不总是准确的,因为它们大多使用单独的链下工具来存储和处理数据。也可以观察到解决方案之间的错误。 同时,有一个名为“Web3 Functions”的平台可以自动/触发智能合约的执行,就像谷歌云等中心化平台触发/执行特定的业务逻辑一样。使用这个平台,用户可以以 Web3 原生方式实现业务逻辑,而不仅仅通过处理链上数据来获取洞察。 仪表板服务 Dune Analytics、Flipside Crypto、Footprint、Transpose 等。 最终用户的洞察与分析 Chainalaysis、Glassnode、Messari、Nansen、The Tie、Token Terminal 等。 Web3 Functions Chainlink 的 Functions、Gelato Network 等。 5.总结思考 正如 Kant 所说的那样,我们只能目睹事物的现象,而无法触及其本质。尽管如此,我们还是利用了被称为“数据”的观察记录来处理信息和知识,我们看到信息技术的创新如何推动文明的发展。因此,在 Web3 市场中构建一个数据管道,除了具有去中心化的特点外,还可以作为实际捕捉这些机遇的起点发挥关键作用。我想用几点思考来总结本文。 5.1 存储解决方案的作用将变得更加重要 拥有数据管道的最重要前提是建立数据和 API 治理。在日益多样化的生态系统中,每个协议创建的规范将继续重新创建,并且通过多链生态系统的碎片化交易记录将使个人更难以得出综合的洞察。然后,“存储解决方案”是能够通过收集碎片化信息并更新每个协议的规范,以统一格式提供集成数据的实体。我们观察到,现有市场上的存储解决方案(如 Snowflake 和 Databricks)正在迅速发展,拥有庞大的客户群体,通过在管道中运营各个层次进行垂直整合,并引领行业发展。 5.2 数据源市场中的机遇 当数据变得更易获取且处理过程改进时,成功的用例开始出现。这会产生一个正循环效应,即数据源和收集工具会爆发性地出现——自 2010 年以来,由于构建数据管道的技术取得了巨大进展,每年收集的数字数据的类型和数量呈指数增长。将这一背景应用于 Web3 市场,未来可以在链上递归生成许多数据源。这也意味着区块链将扩展到各种业务领域。在这一点上,我们可以预期通过 Ocean Protocol 等数据市场或 Helium 和 XNET 等 DeWi(去中心化无线)解决方案以及存储解决方案来推进数据采集。 5.3 重要的是有意义的数据和分析 然而,最重要的是不断询问应准备哪些数据以提取真正需要的见解。没有什么比为了构建数据管道而没有明确的假设来验证而构建数据管道更浪费的了。现有市场通过构建数据管道实现了众多创新,但也通过反复的无意义失败付出了无数的代价。对于技术堆栈的发展进行建设性讨论也是很好的,但行业需要时间来思考和讨论更基本的问题,例如应该将哪些数据存储在区块空间中,或者数据应该用于何种目的。“目标”应该是通过可操作的情报和用例实现 Web3 的价值,而在这个过程中,开发多个基本组件并完成管道是实现这一目标的“手段”。 来源:金色财经
lg
...
金色财经
2023-08-13
华安证券:给予工业富联增持评级
go
lg
...
给予“增持”评级。 风险提示
AI
行业
发展不及预期、客户集中度较高风险、汇率波动风险、行业竞争恶化风险。 证券之星数据中心根据近三年发布的研报数据计算,华泰证券黄乐平研究员团队对该股研究较为深入,近三年预测准确度均值高达89.48%,其预测2023年度归属净利润为盈利241.53亿,根据现价换算的预测PE为17.68。 最新盈利预测明细如下: 该股最近90天内共有19家机构给出评级,买入评级19家;过去90天内机构目标均价为30.04。 以上内容由证券之星根据公开信息整理,由算法生成,与本站立场无关。证券之星力求但不保证该信息(包括但不限于文字、视频、音频、数据及图表)全部或者部分内容的的准确性、完整性、有效性、及时性等,如存在问题请联系我们。本文为数据整理,不对您构成任何投资建议,投资有风险,请谨慎决策。
lg
...
证券之星
2023-08-13
大模型的混沌年代:矛盾、分化与未来
go
lg
...
科技行业的变化趋势与商业模式,要么就是
AI
行业
内知名技术学者,如智谱AI、聆心智能和深言科技等初创企业,背后都有“清华系”的身影。 02 分化:大厂疯狂攒局,小厂拼命掘金 围绕大模型的一系列变革背后,既是技术的进步,也是关键人物与关键企业的推动。如果将镜头转向这些浪潮前沿的公司与人,分化其实也已产生。 真格基金管理合伙人戴雨森曾有一个精妙的比喻:GPT-3的出现等于发现新大陆,而ChatGPT的出现,好比是在新大陆上发现了黄金。中国公司的追赶之旅则如同知道了新大陆和黄金所在,并且知道OpenAI是坐船去的,也知道船大概的样子,却没有详细地图。 经历了此前大模型疯狂的“发布月”后,我们可以清晰地看到此轮创业被分为了学院派、大佬派与大厂派,他们之间的关系也并不完全是零和竞争,而是一种“非零和博弈”。 大厂们在过去一段时间内,除了秀出技术的硬实力外,攒局与建生态成为了主任务。以百度、阿里、华为、字节与京东等大厂为例,一方面有自身的云业务,提供算力支持,另一方面围绕芯片层、框架层、模型层与应用层,也各有布局,以进一步夯实壁垒。 但在这之中,大厂与大厂之间的打法也各有不同。以阿里、百度、华为为代表的大厂更偏向于走垂直整合之路,在算力、平台、模型三层实现一鱼多吃。而火山引擎(字节云)与腾讯云偏向走平台路径,搭建模型货架超市,接入更多的第三方大模型,并提供相应的精调、评测、推理服务。 而对国内创业型的小厂而言,在大模型竞逐的早期,事实上,创业公司唯一确定性就是“不确定性”,不需要很复杂的产品,打准用户的痛点,就可以实现初步成功。 近期出圈的「妙鸭相机」就是一个典型的案例,团队在接受采访时表示:“AIGC 的产品第一天不收钱,就可能收不到钱”。通过低门槛的使用,精准定位写真需求的女性叠加社交媒体的营销裂变,即便是技术上并无明显的创新,但借助一个单一功能就能实现早期的商业化,妙鸭其实给了国内应用层的创企一个很好的启示。 而对妙鸭相机等更多的创业公司而言,如何抓准「不确定」的周期进一步夯实自身的技术壁垒与用户粘性,才是关键。 图片来源:妙鸭相机小红书截图 03 未来:监管加剧,格局未定 在可以预见的未来里,或许正如大厂们的PR文里的论调,大模型终将会赋能千行百业,但在理想之外,如何保证大模型技术的安全性与可控性也成为了关注的焦点。 此前网信办等七部门联合公布《生成式人工智能服务管理暂行办法》,在监管方式与监管范围上对生成式人工智能未来的合规健康发展提供了可靠的法律依据。而在8月1日凌晨,苹果中国区应用商店集中下架多款AIGC应用,实则也暗示了政策端对人工智能监管力度的升温。 在海外,科技巨头们已面临着棘手的AI伦理的争议。「AI四巨头」Anthropic、谷歌、微软和OpenAI就联合成立了前沿模型论坛,就负责任与安全的人工智能问题与美国、欧洲与G7进行沟通。而由Hugging Face、GitHub、EleutherAI等开源社区组成的联盟也正呼吁欧盟政策制定者在制定《欧盟AI法案》时保护开源创新。 对眼下的大模型行业创业者而言,在创业理想、商业化路径之外,对商业模式合规性的考量也将被纳入已有的计划之中。 明确的监管趋势外,更多前沿的探索也正在发生,当下业界围绕多模态、AI智能体、向量数据库以及具身智能等一系列话题的讨论,实则都在大模型的热潮之外,寻找更多的可能性。 以具身智能领域的AI机器人为例,包括谷歌在内的科技巨头增产是将大语言模型接入机器人,让机器人变得更聪明。而同样火热的AI智能体浪潮,甚至被称为“原始AGI”,已接替大模型,成为大公司们关注的下一个领域。 浪潮已至,未来已来。可以肯定的是,大模型的混沌时代或许不会持续太久,但在未来的一段时间内,竞合还将继续。谁能率先利用“不确定性”补齐短板,谁能将大模型能力真正落地于细分与垂直场景,谁能更快地搭建起高质量的数据飞轮,这考验各自的决心与耐力,也将决定着它们在下一轮竞争中各自的生态位。 来源:金色财经
lg
...
金色财经
2023-08-12
GPT-5要来,
AI
行业
再迎剧变?AI人工智能ETF(512930)午后再度下行回调
go
lg
...
截至2023年8月8日 14:29,中证人工智能主题指数(930713)下跌0.88%。AI人工智能ETF(512930)下跌0.88%,最新报价1.35元,盘中成交额已达1267.15万元,换手率3.57%。 规模方面,AI人工智能ETF最新规模达3.55亿元创近1年新高。 资金流入方面,AI人工智能ETF最新资金净流入684.32万元。拉长时间看,近10个交易日内有6日资金净流入,合计“吸金”2001.86万元,日均净流入达200.19万元。 AI人工智能ETF紧密跟踪中证人工智能主题指数,中证人工智能主题指数从沪深市场中选取50只业务涉及为人工智能提供基础资源、技术以及应用支持的上市公司证券作为指数样本,以反映人工智能主题上市公司证券的整体表现。 数据显示,中证人工智能主题指数(930713)前十大权重股分别为海康威视(002415)、科大讯飞(002230)、韦尔股份(603501)、中际旭创(300308)、金山办公(688111)、紫光股份(000938)、中科曙光(603019)、浪潮信息(000977)、澜起科技(688008)、德赛西威(002920),前十大权重股合
lg
...
有连云
2023-08-08
GPT-5要来了?
AI
行业
会发生哪些剧变
go
lg
...
从chatGPT问世至今,AI就在以月为单位飞速进化着,其模型之多,迭代之快,让很多人不不禁惊觉:人类似乎真的站在了AGI大门的边缘。
lg
...
金色财经
2023-08-07
疯了!今年大涨300%还被认为低估了
go
lg
...
合增长率。因此,对计算能力的需求将随着
AI
行业
的增长而增加。 超微电脑的产品还服务于有前景的5G市场,根据grandviewresearch.com的预测,到2030年,5G市场将以59%的年复合增长率复合增长。 云计算市场的增长在近年来有所减缓,但潜力仍然巨大,并且增长可能仍将保持双位数的轨迹。预计云计算市场在未来十年将以13%的年复合增长率复合增长。因此,对于超微电脑来说,会有很长一段时间的顺风期!。 分析师相信超微电脑在这些有利的长期趋势中处于良好的位置。首先,该公司的技术卓越性得到了半导体行业领军企业的认可:超微电脑公司通过与英伟达、英特尔和AMD建立了强大的战略合作伙伴关系。这些合作伙伴关系为超微电脑带来了坚实的竞争优势,因为与这些巨头的合作是一个强有力的高质量迹象。 其次,该公司在增长方面表现出色,近年来业绩明显超过了行业增长。在当前严峻的环境中实现盈利能力指标的改善令人印象深刻。最近的科技巨头的财报显示,即使是超大规模的技术巨头在当前环境中也难以保持盈利能力指标,但相对较小的超微电脑表现出了坚实的适应能力。 最后,该公司多样化的终端市场组合也使其成为市场中的强势参与者,并使其在所服务的终端市场中更具有保护性。值得强调的是,与半导体行业的许多公司不同,超微电脑没有面临客户集中风险。根据最新的10-K报告,没有一家客户占据总销售额的10%以上。 图片来源:超微电脑最新的财报 总结一下,分析师喜欢该公司在当前不确定的环境中的财务表现。这意味着管理层积极应对营收方面的挑战。分析师也认为营收的快速反弹是一个强有力的看涨迹象。该公司谨慎的资本配置和强大的资产负债表意味着超微电脑足够强大,能够经受住暂时的困境。该公司运营在一个高度可能享受长期趋势的行业,分析师认为公司已经为捕捉这些长期的利好趋势做好了准备。 估值 该股票今年大涨300%。也就是说,超微电脑在广泛的美国股市中表现出色。Seeking Alpha Quant将该股票评定为“D级”低估值等级,因为估值倍数大多高于行业中位数和历史平均水平。 图片来源:Seeking Alpha 公司不向股东支付股息。因此,分析师采用折现现金流方法进行估值分析。分析师已经有截至2030年财年的共识营收预测。对于更远的年份,分析师预计年复合增长率为5%。总体而言,按照基本情况,营收预计每年平均增长14%。过去十年,自由现金流毛利率波动较大,所以分析师认为使用约7%的TTM水平是公平的。 图片来源:作者的计算 分析师更倾向于保守估算,对自由现金流采用适度的每年增长50个基点。分析师将10%的加权平均资本成本(WACC)作为分析师的折现现金流计算折现率。如您所见,尽管今年股票大涨300%,但股票看起来仍然被低估了约90%。 图片来源:作者的计算 在今年迄今上涨300%之后,90%的上涨潜力可能看起来太好了,所以让分析师以10%的收入复合年增长率来模拟一个更保守的情景。 图片来源:作者的计算 即使假设更为保守的年复合增长率为10%,股票仍然非常具有吸引力,有36%的上涨潜力。这看起来不错,特别是考虑到公司几乎没有杠杆的干净资产负债表。 风险考虑 没有巨大的上涨潜力就没有巨大的风险。超微电脑是一家激进的成长型公司,目前的市值仍有很多待证明的地方。公司可能无法实现预期的营收增长轨迹或盈利能力的扩展,这是一个重要的风险。任何一季度财务表现不佳或临时降低预期都很有可能导致投资者失望,并引发大规模的股票抛售。目前,股价处于新高,意味着短期内回撤的风险远非零。如果出现这种情况,可能需要多个季度才能让公司重新赢得投资者对其未来增长前景的信心。 该公司的大部分营收来自美国以外的地区,这意味着收益容易受到外汇汇率的不利波动影响。如果国际贸易规则和关税发生不利变化,公司的运营和收益也可能受到不利干扰。地缘政治可能升级也会对公司产生重大不利影响。 作为一家尖端技术公司,超微电脑面临着技术过时的重大风险。为了扩大业务寿命周期,管理层应该投资于创新,并确保公司的专利得到合法和妥善的保护。 总结 总体而言,公司处于良好的位置来吸收长期趋势,目前仍被严重低估。短期挑战似乎已经在过去了,未来季度的收益预期将会强劲。即使在可预见的未来公司再次面临挑战,其资产负债表足够强大来应对困难。分析师认为巨大的上涨潜力远远超过风险和不确定性,使超微电脑成为一个引人注目的投资机会。 $超微电脑(SMCI)$
lg
...
老虎证券
2023-08-07
ChatGPT爆火这半年:热钱、巨头与监管
go
lg
...
资额会更低。” 到目前为止,2023年
AI
行业
最大的一笔融资,就是微软在1月对OpenAI投资的100亿美元。 虎嗅根据公开数据统计,在美国的大模型公司创业中,Inflection AI或将成为人工智能领域融资量仅次于Open AI的第二大初创公司,在其之后分别是,Anthropic(15亿美元),Cohere(4.45亿美元)、Adept(4.15亿美元)、Runway(1.955亿美元)、Character.ai(1.5亿美元)和Stability AI(约1亿美元)。 在中国,2023年上半年国内人工智能行业的公开投融资事件共有456起。而这项统计在2018年-2022年的5年间分别是731、526、353、631和648。 上半年国内人工智能行业公开投融资事件 另一个引发飞轮的事件则是ChatGPT放出API接口。当OpenAI在3月首次开放ChatGPT的API接口时,
AI
行业
内外对此几乎形成共识:行业要变天了。随着更多应用接入大模型,AI之上正在长出更加繁茂的森林。 “做大模型和做应用本身就应该分开”,投资人的嗅觉总是敏锐的,在源码资本执行董事陈润泽看来,AI是一个与半导体分工一样的逻辑,AI大模型的繁荣之后,很快就会看到AI应用的一波繁荣。 今年年初,陈润泽与同事一起前往硅谷时发现,硅谷声名显赫的创业孵化器Y Combinator(OpenAI首席执行官Sam Altman曾在这家孵化器任总裁多年),有一半的项目都转型做生成式AI了。对于大模型的热情,丝毫不逊于如今大洋彼岸的中国。 不过,他也发现在美国无论是资本还是创业者,相比于大模型创业,更看好基于大模型所做的生态应用,毕竟在这个赛道,已经跑出了诸如OpenAI这样的公司,与此同时,美国有很强的ToB应用生态土壤,因此更多的美国公司正在尝试基于大模型的生态做企业应用。 陈润泽的观察正在得到证实,大模型服务平台OpenCSG联合创始人陈冉告诉虎嗅,如今,美国湾区90%以上的公司已经把大模型能力用到方方面面。至于中国,陈冉认为,在年底之前很多的客户也都会用起来。 今年3月左右,陈润泽和团队开始尝试在国内寻找基于大模型做应用的公司,但他发现这样的公司很少。大量资本进入了人工智能行业,但如果追溯这些资金的流向会发现,更多的钱仍集中在头部几家公司中。 “即便是现在,10个与生成式AI相关的项目,能投1个-2个也已经是很不容易了。”除了源码资本,虎嗅也与多位硬科技投资人交流,他们都表示,虽然项目看得多,但真正靠谱的凤毛麟角。 应用端的这种态度,在很多业内人士看来,已是常态。 思必驰联合创始人俞凯认为,表面看似热闹的赛道,其实更多的是名义上的竞争,结果无非两种情况:“一种是为了融钱,纯资本导向;另一种是做全域通用大模型的公司,确实需要喊,不喊的话别人不会知道。” 国内的一些统计数据也正在说明这个问题,根据第三方机构烯牛数据统计,截至2023年7月,国内有AIGC公司242家,1月以来AIGC赛道融资事件71起。而AI大模型赛道上的公司有67家,从ChatGPT发布到现在,融资事件只有21起。 AIGC赛道和AI大模型赛道自ChatGPT发布后的融资事件|数据来源:烯牛数据 “现在国内AI市场上,好的标的太少了。”一位投资人如此告诉虎嗅——好项目太贵,便宜的又不靠谱。虽然目前国内发布的AI大模型数量过百,但国内一众大模型公司中,获得巨额融资的并不多,甚至屈指可数。 很多AI投资到最后都变成了投人——曾经的独角兽公司创始人、互联网大佬、具备大模型相关创业经验的人等。 公司类型 公司 成立时间 大模型及相关产品 融资轮次 互联网公司 百度 2012 文心一言 上市 阿里云 2008 通义千问 上市 騰讯AI实验室 1998 混元 上市 华为云 2019 盘古 未上市 字节跳动 2016 火山方舟 未上市 京东云 2012 言犀 上市 昆仑万维 2008 天工 上市 360 1992 360智脑 上市 公司类型 公司 成立时间 大模型及相关产品 融资轮次 AI公司 商汤科技 2014 日日新 上市 科大讯飞 1999 讯飞星火 上市 云从科技 2015 从容 上市 达观数据 2015 曹植 C轮 出门问问 2014 序列猴子 D轮 智谱Al 2019 ChatGLM B轮 澜舟科技 2021 孟子 Pre-A轮 MiniMax 2021 Glow 股权投资 面壁科技 2022 VisCPM 天使轮 深言科技 2022 CPM 股权投资 聆心智能 2021 Al乌托邦 Pre-A轮 衔远科技 2021 ProductGPT 天使轮 思必驰 2007 DFM-2 IPO终止 公司类型 公司 成立时间 大模型及相关产品 融资轮次 2023年成立都初创AI公司 光年之外 2023 暂无 A轮 百川智能 2023 baichuan 股权投资 零一万物 2023 暂无 股权投资 国内AI大模型相关公司部分统计 今年的一众AI明星项目中,智谱AI、聆心智能、深言科技和面壁智能,都是清华实验室孵化的公司。深言科技、面壁智能两家公司均成立于2022年,且有
AI
行业
内知名学者的技术背书。 比这几家清华系AI公司成立时间更短的是一些互联网行业大佬创立的AI公司,光年之外、百川智能和零一万物均成立于这波大模型热潮开始之后。 美团联合创始人王慧文在2023年年初成立的光年之外,一度融资5000万美元,已是彼时中国大模型行业为数不多的融资案例。与智谱AI、西湖心辰这类已有大模型为基础的公司不同,光年之外是2023年2月开始,从零开始做大模型,其难度可想而知,6月29日,美团公告宣布收购光年之外的全部权益,总代价包括现金约2.33亿美元(合人民币16.7亿元)、债务承担约3.67亿元、及现金1元。 “起码要有自然语言处理背景的人,有一定大模型训练实操经验的人,以及数据处理、大规模算力集群等方面的专业人才。如果同时还要做应用,那应该还要有对应领域的产品经理和运营人才。”陈润泽如此描述一个大模型核心团队的标配。 大公司的AI赌注 过去半年中,老牌互联网大厂们的AI新闻漫天纷飞。对AI大模型的投入,看似是在追热点,但如百度、阿里、华为这样的大公司,在AI上投下的赌注,显然不是跟风。 巨头们在AI上的押注很早就已开始,对这些公司来说,AI并不是一个新鲜的话题。虎嗅根据企查查数据不完全统计,各大厂在2018年开始就对人工智能相关的企业有不同程度的投资,从投资企业来看,大多是人工智能应用方面的企业,尽管涉及到一部分AI芯片企业,但是数量并不多,涉及大模型方面的企业几乎没有,并且大厂所投资的人工智能相关的公司大多与其业务息息相关。 大厂投资机构 投资企业数 平均持股比例 最高持股比例 100%持股企业数 阿里巴巴 23 36.25% 100% 5 百度风投 25 5.50% 15% 0 腾讯投资 54 17.54% 100% 2 三家互联网大厂投资AI相关公司情况|数据来源:企查查 2017年阿里达摩院成立,研究对象涵盖机器智能、智联网、金融科技等多个产业领域,将人工智能的能力赋能到阿里的各个业务线中。2018年,百度提出了“All in AI”的战略。 有所不同的是,生成式AI的出现,似乎是一个转折点。对于拥有数据、算力和算法资源优势的科技巨头来说,人工智能对他们已经不光是赋能场景,而是需要承担基础设施的角色,毕竟,生成式AI的出现,意味着针对人工智能产业的分工已经开始。 以百度、阿里、华为、腾讯,四家云供应商为代表的大厂,虽然都宣布了各自的AI策略,但明显各有侧重。 在过去的半年时间里,巨头纷纷发布自己的大模型产品。对于百度、阿里这样的大厂来说,他们入局大模型的时间并不算晚,基本在2019年。 百度自2019年开始研发预训练模型,先后发布了知识增强文心(ERNIE)系列模型。阿里的通义千问大模型也是始于2019年。除了百度和阿里的通用大模型,6月19日,腾讯云发布了行业大模型的研发进展。7月7日,华为云发布了盘古3.0行业大模型产品。 这些侧重也与各家的整体业务,云战略,以及在AI市场里的长期布局有所呼应。 百度的主线业务盈利能力在过去的5年中,出现了较大波动。百度很早就看到了基于搜索的广告业务在国内市场中的问题,对此,百度选择了大力投入AI技术寻找新机会。这些年来,百度不仅邀请过吴恩达、陆奇等业界大佬出任高管,在自动驾驶上投入热情也远超其他大厂。如此关注AI的百度,势必会在这波大模型之争里重手投注。 阿里对通用大模型同样表现出了极大的热情。一直以来,阿里云一直被寄予厚望,阿里希望走通技术路线创造集团的第二增长曲线。在电商业务竞争日趋激烈,市场增长放缓的大环境下,依云而生的AI产业新机遇,无疑是阿里云在国内云市场上再发力的好机会。 相比百度和阿里,腾讯云在大模型方面选择了优先行业大模型,而华为云则公开表示只会关注行业大模型。 对于腾讯来说,近年来主营业务增长稳中向好。在通用大模型的前路尚不明朗的阶段,腾讯对于AI大模型的投注相对谨慎。马化腾在此前的财报电话会上谈及大模型时曾表示:“腾讯并不急于把半成品拿出来展示,关键还是要把底层的算法、算力和数据扎扎实实做好,而且更关键的是场景落地。” 另一方面,从腾讯集团的角度看,腾讯目前有4所AI Lab,去年也发布了万亿参数的混元大模型,腾讯云投身行业大模型方面的动作,更像是一种“不把鸡蛋放在同一个篮子里”的投注策略。 对于华为来说,一直以来都是重手投注研发,过去10年里华为在研发方面的总投入超过9000亿元。但由于手机业务遇到发展障碍,华为在很多技术研发上的整体策略或也正在面临调整。 一方面手机业务是华为C端技术最大的出口,如果手机业务不为通用大模型买单的话,那么华为研发通用大模型的动力就会明显下降。而对于华为来说,把赌注押在能快速落地变现的行业大模型,似乎是这场AI博弈当中的最优解。正如华为云CEO张平安所说“华为没有时间作诗”。 不过,对科技巨头来说,无论赌注多大,只要能赌对,就能够先一步抢占基础设施的市场份额,从而在人工智能时代获得话语权。 拿着锤子找钉子 对于商业公司来说,所有的决策仍然落到经济账上。 即便是一笔不小的投入,越来越多有远见的公司创始人也意识到,这是一项未来必须要做的事情,即便前期投入可能完全看不到回报。 AI大模型的研发需要一笔不小的投入,但越来越多企业创始人、投资人都认为,这是一项”必要投入”,即便眼下完全看不到回报。 由此,很多在上一波AI浪潮下诞生的人工智能公司,都在沉寂良久之后看到了新的曙光。 “3年前,大家都说GPT-3是通向通用人工智能的可能性。”李志飞在2020年就开始带着一班人马研究GPT-3,彼时出门问问正处在一个发展的转折点,他们希望探索新业务,但经过一段时间的研究之后,李志飞的大模型项目中止了,原因之一是当时模型不够大,另外就是找不到商业落地场景。 不过,2022年底ChatGPT问世以后,李志飞仿佛被扎了一剂强心针,因为他和所有人一样,看到了大模型的新机会。今年4月,出门问问发布了自研的大模型产品——序列猴子。眼下,他们准备拿着新发布的大模型“序列猴子”冲刺港交所,出门问问已在5月末递交了招股书。 另一家老牌AI公司也在跟进,去年7月,思必驰向科创板递交了IPO申请,在今年5月被上市审核委员会否决。 俞凯坦言,就连OpenAI,在GPT2阶段也是用微软的V100训练了将近一年的时间,算力和A100差好几个量级。思必驰在大模型前期积累阶段,也是用更为经济的卡做训练。当然,这需要时间作为代价。 相比于自研大模型,一些应用型公司有自己的选择。 一家在线教育公司的总裁张望(化名)告诉虎嗅,过去半年,他们在大模型应用场景的探索上不遗余力,但他们很快发现在落地过程中存在诸多问题,例如成本与投入。这家公司的研发团队有50人-60人,开始做大模型研究以来,他们扩充了研发团队,新招了一些大模型方面的人才,张望说,偏底层模型方面的人才很贵。 张望从未想过从头开发大模型,考虑到数据安全和模型稳定性等问题,他也不打算直接接入API做应用。他们的做法是参考开源大模型,用自己的数据做训练。这也是很多应用公司目前的做法——在大模型之上,用自己的数据做一个行业小模型。张望他们从70亿参数的模型开始,做到100亿,现在在尝试300亿的模型。但他们也发现,随着数据量增多 ,大模型训练会出现的情况是,可能新版本不如上一个版本,就要对参数逐一调整,“这也是必须要走的弯路。”张望说。 张望告诉虎嗅,他们对于研发团队的要求就是——基于公司的业务探索AI大模型场景。 这是一种拿着“锤子”找“钉子”的方法,但并不容易。 “目前最大的难题是找到合适的场景。其实有很多场景,即便用了AI,效果也提升不了太多。”张望说,例如在上课的场景中,可以用AI大模型赋能一些交互模式,包括提醒学员上课功能、回答问题和打标签等,但他们试用了AI大模型之后,发现精准度不行,理解能力和输出能力并不理想。张望的团队尝试过一段时间后,决定在这个场景里暂时放弃AI。 另一家互联网服务商小鹅通,也在AI大模型爆发后第一时间开展了相关业务的探索。小鹅通的主要业务是为线上商家提供数字化运营工具,包括营销、客户管理以及商业变现。 小鹅通联合创始人兼COO樊晓星告诉虎嗅,今年4月,当越来越多的应用基于生成式AI诞生时,小鹅通看到了这个技术背后的潜力,“例如MidJourney,生成式AI对于设计图像生成方面的提效确实有目共睹。”樊晓星她们在内部专门组织了AI研究的业务线,寻找与自身业务相关的落地案例。 樊晓星说,在将大模型接入业务的过程中,她所考虑的就是成本和效率,“大模型的投入成本还是蛮高的。”她说。 互联网行业的“钉子”算是好找的,AI落地真正的难点还是在工业、制造这样的实体产业。 俞凯告诉虎嗅,这一波AI浪潮仍然是螺旋式上升、波浪式前进,在产业落地上面的矛盾一点都没变化,只是换了一个套壳而已。所以从这个意义上看,这两次AI浪潮的规律是相同的,最好的办法就是学习历史——“上一波AI浪潮的教训,这次就别再犯了。” 虽然很多厂商在AI大模型的落地方面都喊出了“产业先行”的口号,但很多实体产业的场景真的很难与目前的AI大模型相匹配。比如在一些工业检测场景应用的AI视觉检测系统,即便对AI模型的需求没有高到10亿参数的量级,但初期的训练数据仍然捉襟见肘。 以一个简单的风电巡检场景为例,一个风场的巡检量达到七万台次,但同样的裂痕数据,可能只会出现一次,机器可以学习的数据量是远远不够的。扩博智能风电硬件产品总监柯亮告诉虎嗅,目前风机叶片的巡检机器人还做不到100%的精确分析叶片裂痕,因为可供训练和分析的数据量太小了,要形成可靠的全自动巡检和识别,还需要大量的数据积累和人工分析。 不过,在工业数据积累较好的场景中,AI大模型已经可以做到辅助管理复杂的三维模型零件库了。国内某飞机制造企业的零件库就已经落地了一款基于第四范式“式说”大模型的零件库辅助工具。可以在十万余个三维建模零件中,通过自然语言实现三维模型搜索,以三维模型搜三维模型,甚至还能完成三维模型的自动装配。这些功能,在很多卡住制造业脖子的CAD、CAE工具中都需要经过多步操作才能完成。 今天的大模型和几年前的AI一样面临落地难题,一样要拿着锤子找钉子。有人乐观地相信,今天的锤子和过去完全不一样了,但到了真金白银地为AI付费时,结果却有些不同。 彭博社在7月30日发布的Markets Live Pulse调查显示,在514名受调投资者中,约77%的人计划在未来六个月内增加或保持对科技股的投资,且只有不到10%的投资者认为科技行业面临严重的泡沫危机。然而这些看好科技行业发展的投资者中,却只有一半人对AI技术持开放的接受态度。 50.2%的受访者表示,目前还不打算为购买AI工具付费,多数投资公司也没有计划将AI大范围应用到交易或投资中。 卖铲子的人 “如果你在1848年的淘金热潮里去加州淘金,一大堆人会死掉,但卖勺子和铲子的人,永远可以赚钱。”陆奇在一次演讲时说。 高峰(化名)想当这样的“卖铲子的人”,准确地说,是能够“在中国卖好铲子的人”。 作为一名芯片研究者,高峰大部分科研时间都在AI芯片上。过去一两个月,他感到了一种急迫性——他想做一家基于RISC-V架构的CPU公司。在一家茶室,高峰向虎嗅描绘了未来的图景。 然而,要从头开始做AI芯片,无论是在芯片界,还是在科技圈,都像是一个“天方夜谭”。 当AI大模型的飞轮飞速启动时,背后的算力逐渐开始跟不上这一赛道中玩家的步伐了。暴涨的算力需求,使英伟达成了最大的赢家。但GPU并非解决算力的全部。CPU、GPU,以及各种创新的AI芯片,组成了大模型的主要算力提供中心。 “你可以把CPU比喻为市区,GPU就是开发的郊区。”高峰说,CPU和AI芯片之间,需要通过一个叫做PCIE的通道连接,数据传给AI芯片,然后AI芯片再把数据回传给CPU。如果大模型的数据量变大,一条通道就会变得拥挤,速度就上不去,因此需要拓宽这条路,而只有CPU能够决定这条通路的宽窄,需要设置几车道。 这意味着,中国在大模型上,即便突破了AI芯片,仍有最关键的CPU难以破局。哪怕是在AI训练上,越来越多的任务可以被指派给GPU承担,但CPU依旧是最关键的“管理者”角色。 2023WAIC大模型展区展出的部分国产芯片 自1971年英特尔造出世界上第一块CPU至今50余年,在民用服务器、PC市场,早已是英特尔和AMD的天下,英特尔更是建立起涵盖知识产权、技术积累、规模成本、软件生态于一体的整个商业模式壁垒,且这种壁垒从未衰退。 要完全抛开X86架构和ARM架构,基于一个全新架构研发完全自主的CPU芯片,可以说是“九十九死一生”,基于MIPS指令集的龙芯,在这条路上走了20多年,更不用说是 RISC-V这样未被充分开垦和验证过的开源架构。 指令集,就像一块块土地,基于指令集开发芯片,就相当于是买地盖房子。X86的架构是闭源的,只允许Intel生态的芯片,ARM的架构需要支付IP授权费,而RISC-V是免费的开源架构。 产业界和学术界已经看到了这样的机会。 2010年,加州伯克利两位教授的研究团队从零开始开发了一个全新的指令集,就是RISC-V,这个指令集完全开源,他们认为CPU的指令集不应该属于任何一家公司。 “RISC-V或许是中国CPU的一道曙光。”高峰说。2018年,他在院所孵化了一家AI芯片公司,彼时他表示,自己不想错过 AI浪潮发展的机会,这一次,他依然想抓住,而这个切入点,就是RISC-V。在大模型以及如今国产替代的时代,这个需求显得更为紧迫,毕竟,极端地考虑一下,如果有一天,中国公司用不了A100了,又该怎么办。 “如果要取代ARM和X86,RISC-V的CPU需要性能更强,也需要和Linux上做商业操作系统的人参与到代码的开发中。”高峰说。 高峰不是第一个意识到这个机会的人,一位芯片行业投资人告诉虎嗅,他曾与一家芯片创业公司创始人聊起,用RISC-V的架构去做GPU的机会。如今,在中国已有一些基于RISC-V架构做GPU的公司,但生态依旧是他们面临的最大的问题。 “Linux已经示范了这条路是可以走通的。”高峰说,在Linux这套开源操作系统中,诞生了红帽这样的开源公司,如今许多云服务都建立在Linux系统上。“需要足够多的开发者。”高峰提出了一个方法。这条路很难,但走通了,将是一条光明的道路。 飞轮转得太快了 大模型的“应激反应”下,感到急迫的不光是高峰。 国内某AI大模型公司联创告诉虎嗅,今年初他们也曾短暂上线过一款对话大模型,但随着ChatGPT的升温,有关部门提高了对大模型安全性的重视,并对他们提出了很多整改要求。 “在没有特别明确的监管政策出来之前,我们不会轻易把产品开放给普通用户,主要还是To B的逻辑。”左手医生CEO张超认为,在《管理办法》出台之前,贸然将生成式AI产品开放给C端用户,风险很大。“现阶段,我们一方面在持续迭代优化,另外一方面也在持续关注政策、法规,保证技术的安全性。” “生成式AI的监管办法还不明确,大模型公司的产品和服务普遍很低调。”一家数字化技术供应商,在6月发布了一款基于某云厂商通用大模型开发的应用产品,在发布会上,该公司技术负责人向虎嗅表示,他们被这家云厂商要求严格保密,如果透露使用了谁的大模型,他们会被视为违约。而对于为何要对案例保密,这位负责人分析,可能很大一部分原因是要规避监管风险。 在全球都对AI提高警惕的当下,任何市场都不能接受监管的“真空期”。 7月13日,网信办等七个部门正式发布了《生成式人工智能服务管理暂行办法》(下文简称“《管理办法》”),该办法自2023年8月15日起施行。 “《管理办法》出台后,政策会从问题导向转为目标导向发展就是我们的目标。”观韬中茂律师事务所合伙人王渝伟认为,新规是重“疏”而不重“堵”。 浏览美国的风险管理库,是王渝伟每天必需的功课,“我们正在为利用GPT等大模型进行细分行业的商业应用提供风控合规的方案,建立一套合规治理框架。”王渝伟说。 美国的AI巨头们正排着队向国会表忠心。7月21日,谷歌、OpenAI、微软、Meta、亚马逊、AI创业公司Inflection、Anthropic,七家最具影响力的美国AI公司,就在白宫签署了一份自愿承诺。保证在向公众发布AI系统前允许独立安全专家测试他们的系统。并与政府和学术界分享有关他们系统安全的数据。他们还将开发系统,当图像、视频或文本是由AI生成时向公众发出警告,采用的方法是“加水印”。 7家美国AI巨头排代表在白宫签署AI承诺 此前,美国国会听证会上,OpenAI的创始人山姆·奥特曼表示,需要为人工智能模型创建一套安全标准,包括评估其危险能力。例如,模型必须通过某些安全测试,例如它们是否可以“自我复制”和“渗透到野外”。 或许山姆·奥特曼自身也没有想到,AI的飞轮会转得这么快,甚至有失控的风险。 “我们一开始还没有意识到这件事情这么紧迫。”王渝伟说,直到上门来咨询的公司创始人越来越多。他感到,这一次的人工智能浪潮正在发生与过去截然不同的变化。 今年年初,一家最早接入大模型的文生图公司找到王渝伟,这家公司希望把自己的业务引入中国,因此,他们想了解这方面的数据合规业务。紧接着,王渝伟发现,这类的咨询越来越多,更明显的变化是,前来咨询的不再是公司的法务,而是创始人。“生成式AI的出现,原有的监管逻辑已经很难适用。”王渝伟说。 从事大数据法律工作多年的王渝伟发现,生成式AI与上一波AI浪潮正在呈现更加底层的变化。例如,上一次的AI更多是基于算法进行推荐,还有就是一些人脸识别,都是针对一个场景,针对一些小模型,在具体应用场景当中进行训练,涉及的法律问题不外乎知识产权、隐私保护的问题。而在这个生成式AI生态之上的不同角色,例如提供底层大模型的公司,在大模型之上接入做应用的公司,存储数据的云厂商等,对应的监管都不尽相同。 目前大模型所带来的伴生风险已经有了共识,业界明白,商业化应用势必会放大这种风险,要想保持业务的连续性,就需要重视监管。 难点就是,“如何找到一条既能做好监管,又能不影响行业发展的路径。”王渝伟说。 结语 对于整个行业来说,在对技术加深探讨的同时,也正在引发更为深远的思考。 在AI逐渐占据科技产业的主导地位之时,要如何确保技术的公正、公平和透明性?当头部公司紧紧掌控技术和资金流向时,如何确保中小企业和初创公司不被边缘化?大模型的开发和应用蕴含巨大潜力,但盲目跟风是否会导致我们忽视其他创新技术? “从短期来看AI大模型正在被严重高估。但从长期看,AI大模型被严重低估了。” 半年时间里,AI热浪翻涌。然而对于中国的创业公司和科技巨头来说,在热炒的市场氛围中,如何保持清醒的判断,做出长远的规划和投资,将是检验其真正实力和远见的关键。 来源:金色财经
lg
...
金色财经
2023-08-04
上一页
1
•••
45
46
47
48
49
•••
58
下一页
24小时热点
中美重磅!彭博:若特朗普与普京达协议 中国最高领导人面临这个重大威胁
lg
...
美国突发“出口”中国移民!特朗普签署新命令:即刻停止移民儿童法律援助
lg
...
中国国家主席习近平“果然”信号明确!交易主管:中国经济策略发生重大变化
lg
...
周评:习近平会见科技领袖引爆市场!特朗普再发关税威胁,一句“独裁者”吓坏欧洲
lg
...
下周展望:“德国史上最重要选举”来袭!美国PCE绝对爆点,别忘了日本CPI
lg
...
最新话题
更多
#SFFE2030--FX168“可持续发展金融企业”评选#
lg
...
19讨论
#链上风云#
lg
...
60讨论
#VIP会员尊享#
lg
...
1751讨论
#比特币最新消息#
lg
...
903讨论
#CES 2025国际消费电子展#
lg
...
21讨论